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  Abstract. The correlations between GDP/capita 
growth rates of 27 European countries are scanned in 
various moving time window sizes. The square averaged 
correlation coefficients are taken as the link weights for a 
network having the countries as vertices. The network 
average degree and the weight set variance are found to 
be monotonic functions on the time window size. The 
statistics of the weight distributions as well as the 
adjacency matrix eigensystem are discussed. A new 
measure of the so called country overlapping is proposed 
and applied to the network. The ties and clusters are better 
emphasized through a threshold analysis. The derived 
clustering structure is found to confirm intuitive or 
empirical aspects, like the convergence clubs i.e. have a 
remarkable consistency with the results reported in the 
actual economic literature. 
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1. INTRODUCTION 

  Modelling the dependences between the 
macroeconomic (ME) variables has to take into account 
circumstances that differ substantially from those 
encountered in the natural sciences. First, experimentation 
is usually not feasible and is replaced by survey research, 
implying that the explanatory variables cannot be 
manipulated and fixed by the researcher. Second, the 
number of possible explanatory variables is often quite 
large, unlike the small number of carefully chosen 
treatment variables frequently found in the natural 
sciences. Third, the ME time series are short and noisy. 
Most data have a yearly frequency. When social time 
series have been produced for a very long period, there is 
usually strong evidence against stationarity. 

Some macroeconomic (ME) indicators are monthly 
and/or quarterly registered, increasing in this way the 
number of available data points, but some additional noise 
is naturally enclosed in the time series so generated 
(seasonal fluctuations, external and internal short range 
shocks, etc). This seems to be a solid argument for the fact 
that the main data sources, at least the ones freely available 
on the web, tend only to keep the annual averages/rates of 
growth of the ME indicators. 

Let us consider, for example, a time interval of one 
hundred years, which is mapped onto a graphical plot of 
100 data points. From the statistical physics viewpoint, 
100 is a quite small number of data points, surely too small 
for speaking about the so called “thermodynamic limit”. 
On the other hand, from a socio-economic point of view, 
we can justifiably wonder if a growth, say, of 2% of any 
ME indicator has at the present time the same meaning as 
it had one century ago. One must take into account that 
during that time, the social, politic and economic 

environment was drastically changed. Moreover the 
methodology of data collecting and processing is today 
different from what it was two generations ago. Indeed, the 
economic world is created by people and is substantially 
changing from a generation to another one (sometimes 
also during one and the same generation). Thus, this way 
of statistical data aggregation turns to be controversial.  

On the other hand, an increasing interest in network 
analysis has been registered during the last decade, 
particularly due to its potential unbounded area of 
application. Indeed, the inter-disciplinary (or rather trans-
disciplinary) concept of “network” is frequently met in all 
scientific research areas, its covering field spanning from 
the computer science to the medicine and social 
psychology. Moreover it proves to be a reliable bridge 
between the natural and social sciences, so the recent 
interest in this field is fully justified.  

Using the strong methodological arsenal of the 
mathematical graph theory, the physicists mainly focused 
on the dynamical evolution of networks, i.e. on the 
statistical physics of growing networks. The remarkable 
extension from the concept of classical random graph [1] 
to the one of non-equilibrium growing network [2] allows 
for accounting the structural properties of random complex 
networks in communications, biology, social sciences and 
economics [3, 4]. Indeed, the field of the possible 
applications seems to be unbounded, it spanning from the 
“classical” WWW and Internet structures [5, 6] to some 
more sophisticated social networks of scientific 
collaborations [7-9], paper citations [10] or collective 
listening habits and music genres [11]. 

   In most approaches, the Euler graph theory legacy was 
preserved, especially as regards to the “Boolean” character 
of links: two vertices can only be either tied or not tied, 
thus the elements of the so-called adjacency matrix only 
consist of zeros and ones. However, many biological and 
social networks, and particularly almost all economic 
networks, must be characterised by different strengths of 
the links between vertices. This aspect led to the concept 
of “weighted network” as a natural generalisation of the 
graph-like approaches. Of course, various ways of 
attaching some weights to the edges of a fully connected 
network [12-14]. Some ways to relate the weights to the 
correlations between various properties of nodes have been 
proposed in the recent literature [15-18].  

   The correlation coefficients Cij between two ME time 
series {xi} and {yj}, i, j = 1, …, N, is calculated in the 
present work according to the (Pearson’s) classical 
formula: 
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Each Cij is clearly a function both of the time window 
size T and of the initial time (i.e. the “position” of the 
constant size time window on the scanned time interval). 
One has to note (or recall) that the correlation coefficients 
are not additive, i.e. an average of correlation coefficients 
in a number of samples does not represent an “average 
correlation” in all those samples. In cases when one needs 
to average correlations, the Cij  ‘s first have to be converted 
into additive measures. For example, one may square the 
Cij ‘s before averaging, to obtain the so called coefficients 
of determination (Cij

2) which are additive, or one can 
convert the Cij ‘s into so-called Fisher z values, which are 
also additive [19]. The former approach is used here 
below, so that the average correlations are calculated as: 
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where N is the total number of points (the time span), T 
is the time window size used for the analysis, ν = N – T + 
1, and t is a discrete counter variable.  

   Let us consider that the M agents (countries) which the 
ME time series refer to, may be the vertices of a weighted 
network. The weight of the connection between i and j 
reflects the strength of correlations between the two agents 
and can be simply expressed as: 

)(ˆ)( TCTw ijij =                                                            (3)   

 fulfilling the obvious relations: 0 ≤ wij ≤ 1; wij = wji and 
wij = 1 for i = j. 

   One must stress at this point that the link connecting 
the vertices i and j does not reflect here either an 
underlying interaction or a physical/geographical path. 
Instead, the weight wij is a measure of the similarity degree 
between the ME fluctuations in the two countries. The 
term “fluctuations” refers here to the account of the annual 
rates of growth of the considered ME indicator.Networks 
are characterized by various parameters. For instance, the 
vertex degree is the total number of vertex connections. It 
may be generalised in a weighted network [13,14] as: 
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Thus, the average degree in the network is: 

∑∑
=

≠
=

>=<
M

i

M

ij
j

ijw
M

k
1 1

1
                                                   (5) 

   Another describes the number of triangles in the 
network indicating some correlations. In the literature, 
there have been several ways to evaluate assortative 
correlations, such as the assortativity coefficient 
introduced by Newman [4] that is the Pearson correlation 
coefficient of the degrees at either ends of an edge. 
Nonetheless, all of them focus on local degree-correlations 
between two connected nodes. Here below we will 
introduce an overlapping coefficient in order to indicate 
some hierarchy in clusters on the network. Yet, the first 
question is to find whether clusters exist. This will be done 
through a study of the eigenvalues and eigenvectors of the 
correlation weights matrix defined here above.  

   A question of great interest in factor analysis is to 
evaluate how many factors can be extracted from the 
eigenvalue spectrum i.e. how many common factors are 
underlying the correlation matrix. The Kaiser criterion 
[20] and the Cattell  scree test [21] are perhaps the most 
widely used in this question. According to the former, one 
can retain only factors with eigenvalues greater than 1. In 
essence this is like saying that, unless a factor extracts at 
least as much as the equivalent of one original variable, 
one has to drop it. The latter test suggests finding the 
“place” where the smooth decrease of the eigenvalue 
distribution appears to drop significantly before levelling 
off to the right of the plot. On the left of this point, 
presumably, one finds the “factorially significant” 
eigenvalues. Both methods were found remarkably 
convergent in [22] when the number of common factors is 
not too large. 

   The here below investigated ME indicators are the 
GDP/capita annual growth rates. Indeed, the GDP/capita is 
expected to reflect to the largest extent what A. Smith 
called, over two centuries ago, “the wealth of nations”. In 
fact, it is expected to account both for the economic 
development and for the people well being. The target 
group of countries is composed of M = 27 countries 
belonging to the European Union in 2008. The countries 
are abbreviated according to The Roots Web Surname List 
(RSL) [23] which uses 3 letters standardized abbreviations 
to designate countries and other regional locations. Given 
the target country group, the World Bank database [24] is 
here used instead of the more refereed to Penn World 
Tables [25] in which some data is missing for several East-
European countries. In this way, the investigated time span 
goes from 1993 to 2008.  

   A general question facing researchers in many areas of 
inquiry is how to organize observed data into meaningful 
structures. Having computed the square averaged 
correlation coefficients from Eq. 2, i.e. the adjacency 
matrix entries wij in various time window sizes (Eq. 3), 
some statistical properties of the {wij} dataset are analysed 
in Section 2. The cumulative distribution function F({ wij}) 
and the kurtosis K({ wij}) indicate a shift from a Gaussian 
distribution (in small size time windows) to a uniform-like 
one (in large time window sizes). The variance σ2({ wij}) 
and the network average degree <k> (from Eq. 5), are 
found to display a smooth behaviour when the time 
window size increases: σ2 increases roughly linearly while 
<k> decreases following an inverse cubic root law. The 
adjacency matrix eigenvalues spectrum is also studied 
through a time window perspective. The number of 
“factorially relevant” eigenvalues is emphasized. The 
problem of the “optimal” time window for ME correlation 
investigations is addressed in Appendix A.The “best” time 
window size is usually considered to be the one 
corresponding to the minimal variance of the output 
dataset. However, this criterion is proved not to be 
universal. From the Kolmogorov-Smirnov test and a chi-
square test, we find that a 5-8 years time window has an 
“optimal” size.  

   From the eigenvectors corresponding to the two 
largest eigenvalues, a cluster-like structure of the EU-27 
countries is built in Section 3, on the basis of the 
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eigenvector components. The EU-27 network along a 
more geographical perspective is also plotted, by 
emphasizing the relative importance of the link strength 
(weight) through a display at different threshold values. 
The threshold values are chosen according to a 
significance level derived from the t-Student statistic test 
applied to the [wij] matrix in Appendix B. The clustering 
scheme and the network structure are in agreement with 
results reported in the recent economic literature as regards 
to “convergence clubs”. In particular, the so-called 
“Scandinavian”, “Continental”, and “East-European” 
clusters are identified, as well as the particular position of 
GBR as the single member of any “Anglo” pattern. 

   In Section 4 the “clustering” structure of the EU-27 
countries is measured through a parameter indicating to 
what extent a country is “connected” to the whole system. 
Using some new coefficient, Oij which takes into account 
not only the degrees ki and kj, but also the number Nij of 
common neighbours of i and j vertices, whence called the 
“overlapping”, we show some  hierarchy in countries.  

   A conclusion is drawn in Section 5 emphasizing the 
main gains of mapping the GDP/capita (and possibly other 
ME time series) into the weighted network formalism: an 
increasing explanatory power, a better intuitive 
understanding and the possibility of using some new 
analytical tools, in addition to the ones existing in the 
actual economic literature.  

 
2. DATA ANALYSIS 

   Having built the adjacency matrix [wij] (Eq. 3), the 
first observation one can make is that its entries are 
functions of the time window size T from Eq. 2. Thus, the 
most important characteristics of the weighted network 
must be seen as depending on T as well.  Consider first the 
cumulative distribution function (CDF) of the weights - 
elements of the adjacency matrix. The cumulative 
distribution of the weights is given in Fig. 1 for different 
time windows, including the minimal (3 years), the 
maximal (16 years) and two intermediate (5 respectively 
10 years). It can be readily seen that the CDF shape is 
dramatically changing when the time window size 

changes. For the small size time windows (3 and 5 years) 
the CDF is close to a Gaussian, while for the large time 
windows the CDF approaches the shape expected for a 
uniform  CDF. 

   These changes of the distribution shape can also be 
pointed out through the kurtosis (K) variation with the time 
window size (Fig. 2). For the Gaussian distribution KG = 0, 
while for the discrete uniform distribution of m data (m = 
300 here) it can be calculated [19] as: 
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It is found on Fig. 2 that the K value shifts between the 
limit KG and KU indeed. 

   Taking into account the above results one may 
conclude that the distribution of the adjacency matrix 
entries wij  (i > j) becomes flatter and flatter when the time 
window size increases, shifting from the Gaussian-like 
shape to the uniform-like distribution. Some statistical 
tests are done in Appendix A.    
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Fig. 1 The CDF of the weights set {wij} for four different 
time window sizes 
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Fig. 2 The kurtosis coefficient of the weights set {wij} versus the time window size. Inset: the double logarithm of the wij ’s 
probability density function for 5 years time window size. The thick line has a ±2 slope, corresponding to the Gaussian 
distribution. 
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Fig. 3 The average degree <k>/M and the variance of 

the weights set {wij} in the EU-27 network versus the time 
window size. Variance is normalised to its maximal value. 
Inset: <k>/M versus T in log-plot for emphasizing the 
inverse cubic root law. 

  
  The average degree of the EU-27 weighted network is 

plotted in Fig. 3 for all possible time window sizes with 
which the time span 1993-2008 can be scanned. One can 
see that the decreasing of <k> with the time window size T 
is well fitted by a power law: <k> ~ 1 / T 1/ 3.     

   
 The somewhat unexpected behaviour, i.e., the 

monotonic (roughly linear) increase of the variance with 
the time window size can be understood through the 
change in CDF shape. A possible explanation of this 
behaviour is based on the number of common factors 
underlying the correlation coefficients. 

   As the adjacency matrix of the EU-27 weighted 
network is in fact a squared-averaged correlation matrix of 
the GDP/capita growths, it is natural to ask for the 
interpretation of its eigensystem.     

   
The six largest eigenvalues are plotted in Fig. 4 for each 

possible moving time window size scanning the time span 
1993-2008. As mentioned in the Introduction, the Kaiser 
criterion suggests to evaluate the number of common 
factors taking into account the eigenvalues having a 
percent contribution to the total variance at least 1/M = 
1/27 (the continuous horizontal line in Fig. 4) 

   
 At first sight one can see that the first eigenvalue 

contribution to the total variance monotonically decreases 
when the time window size increases, while the other 
eigenvalues contribution becomes more and more 
significant. Moreover, the cumulated contribution of the 
first two largest eigenvalues decreases from 80% for T = 3 
years, to 64% for T = 16 years. Therefore, for the small 
size time windows (3-5 years) two common factors may be 
accounted for, while in the largest time windows the 
number of common factors increases to six. 
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Fig. 4 The six largest eigenvalues (EV) of the adjacency 

matrix [wij] for the EU-27 weighted network versus the 
moving time window size. The eigenvalues are normalized 
the correlation matrix size (M = 27), thus the vertical axis 
may be read as a fractional contribution to the total 
variance.  

  
  This finding reinforces the results of the previous 

subsection on the change in shape of the CDF. When the 
number of common factors is small, the correlation 
coefficients are grouped around the mean value, leading to 
the Gaussian-like distribution shape. On the contrary, 
when many common factors (economic, social, political) 
are accounted for, the correlations between the GDP/capita 
rates of growth tend to cover the whole interval between 0 
and 1 (in absolute values), and a uniform-like distribution 
emerges. 

 
3. THE CLUSTERED WEIGHTED NETWORK OF 
EU-27 COUNTRIES 

   
 Since the eigenvectors corresponding to the largest 

eigenvalues of the correlation matrix are usually expected 
to be those carrying the most useful information, a cluster-
like structure of the EU-27 countries is built in Fig. 5 on 
the basis of the structure of the first two eigenvectors. 

    
One can easily see (Fig. 5)   that a multi-polar structure 

exists: the “Continental” group (l.h.s., up) and the 
“Scandinavian” group (l.h.s., middle) are somewhat apart 
from each other. An extreme position is taken by GBR 
(r.h.s., down) which appears as the single member of any 
“Anglo” pattern, since the other OECD representatives of 
a (supposed to be) anglo-convergence club, e.g. U.S.A., 
Canada and Australia [26, 27]), are missing from our 
study. Another interesting aspect pointed out by Moran in 
[27] is also found here, i.e. IRL has a non appartnence  to 
the “Anglo” cluster, but is rather  in  the “Scandinavian” 
group and close to the “Continental” one.  
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For the first time, i.e. as a complementary addition to 
previous investigations on the subject, we observe an 
emerging East European convergence club (r.h.s., down), 
tying to Scandinavian and Continental group through a 

HUN – POL line. Observe some “Mediterranean” 
clustering as well. 
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Fig. 5 The cluster-like structure of the EU-27 countries according to the GDP/capita rates of growth. The country 

coordinates are the corresponding eigenvector components of the EU-27 weighted network adjacency matrix [wij]. 
    
 
The clustering scheme in Fig. 5 is in agreement with 

results reported in the recent economic literature as regards 
the so-called “convergence clubs” across the Western 
Europe, i.e. groups of economies that present a 
homogeneous pattern and converge towards a common 
steady state [26-30]. In particular, in [26] it has been 
showed that Sweden, (Norway) and Denmark, registered a 
similar level of income mobility while in [27] three 
distinct patterns of development and income distribution, 
indeed called “Continental”, “Anglo” and “Scandinavian”, 
have been found by examining a group of 17 OECD 
economies during the two decades before 2000. In the 
same idea, “a high degree of heterogeneity in preferences 
for redistribution across four clusters of different systems 
of social protection of OECD countries” namely 
Scandinavian, Continental, Anglo-Saxon and 
Mediterranean has been reported in [30]. 

 

 
Finally, the adjacency matrix [wij] can be used to plot 

the EU-27 network along a more geographical perspective. 
The network is, obviously, fully connected; it is of interest 
to observe the relative importance of the link strength 
(weights) through a display at different threshold values. 
In the subsequent figures, only the links having the 
corresponding weights greater than a certain threshold 
value, wα are taken into account. This threshold value is a 
priori  chosen according to a significance level derived 
from the t-Student statistic test applied to the [wij] matrix 
(Appendix B). The resulting networks are plotted in Figs. 
6a, 6b, 6c for the T = 5 years moving time window size.  
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Fig. 6 The EU-27 weighted network for three different weight thresholds: (a) wT=0.49; (b) wT=0.69; (a) wT=0.81.  
Fig. 6a includes all four “convergence clubs” above discussed. The single element “Anglo” club is well isolated, as seen 
already in Fig. 6b;  the “Scandinavian” and “East European” clusters become isolated for a higher threshold, as seen in Fig. 6c. 
It is also remarkable to observe the decreasing number of long-range links when going from Fig. 6a to Fig. 6b and further to 
Fig. 6c. Even if the actual geographic, investment and trade inter-country ties are not explicitly considered in our study, the 
degree of similarity of the country GDP/capita fluctuations well supports the evidence of the so-called “regionalization” [28, 
29]. 

 
 
4. THE COUNTRY OVERLAPPING HIERARCHY 

 
   The previous results lead to consider the hierarchical or 

“clustering” structure of the EU-27 countries. For the purpose 
of describing this aspect we introduce a quantity which is able 
to measure to what extent a country is “connected” to the 
whole system. The idea, first hereby applied to a non-
weighted network, is to construct a country hierarchy using 
some new coefficient, Oij which takes into account not only 
the degrees ki and kj, but also the number Nij  of the common 
neighbours of i and j vertices,. This coefficient Oij is here 
called “overlapping” of i and j vertices (in spite of the fact 
that this term has already been assigned various meanings in 
the network literature). 

   Firstly, for a non-weighted network consisting of M 
vertices, Oij must satisfy the following properties: 

 
(1) Oij = 0 ⇔ Nij = 0 (fully disconnected, or “tree-like” 

network) 
 
(2) Oij = 1, ∀i≠j in a fully connected network, where Nij = 

M – 2; ki = kj = M – 1; 
 
(3) 0 < Oij < 1, otherwise; 
 
(4) Oij ~ Nij and Oij ~ < kij> ≡ (ki + kj)/2. 

   A quantity satisfying all these conditions (1)-(4) can be 
defined as: 
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For a weighted network,Eq.7may be generalised as: 

















++
−−

= ∑∑∑
≠
=

≠
=

≠
=

M

jq
q

jq

M

ip
p

ip

M

jil
l

jlilij wwww
MM

O
11

,
1

)(
)2)(1(2

1 ,i≠j. (8)                      

 
One can easily see that 0 < Oij < 1, and Oij = 1 only for all 

wij =1, i.e. fully connected non-weighted network. However, 
for a weighted network, Oij can never be zero. 

    
Each overlapping coefficient is thus computed for each 

EU-27 country using the adjacency matrix defined in Eq. 3. A 
country average overlapping index <Oi> can be next assigned 
to each country, dividing the sum of its overlapping 
coefficients by the number of neighbours:  
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The results are shown in Table 1. 
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Table 1 The country average overlapping index of each 

EU-27 country 
 

SWE 0.38 NLD 0.35 CYP 0.32 
DNK 0.37 AUT 0.35 SVN 0.32 
GER 0.37 FIN 0.35 CZE 0.31 
FRA 0.37 POL 0.35 ROM 0.31 
HUN 0.37 ESP 0.35 BGR 0.31 
SVK 0.37 PRT 0.35 LTU 0.31 
BEL 0.36 ITA 0.34 LVA 0.31 
IRL 0.36 MLT 0.33 EST 0.30 
LUX 0.36 GRC 0.33 GBR 0.29 

 
   The highest values of the average overlapping index 

correspond to the countries belonging to the “Continental” 
and “Scandinavian” groups, while the lowest values 
correspond to several countries forming an East European 
cluster. Again, the separate position   of GBR as a single 
representative of the “Anglo” pattern, with respect to 
European economies is emphasized, the former being in fact a 
cluster by itself.  

    
One has to note a remarkable similarity between the 

country ranking over the first eigenvector component (Fig.5) 
and the ranking over the country average overlapping index 
(Table 1). This similarity proves the ability of the hereby 
introduced <Oi> index to supply a correct description of the 
country weighted network.                                           

 
5.  CONCLUSIONS 

   The present paper has shown the possibility of mapping a 
macroeconomic time series, namely the GDP/capita rates of 
growth into a weighted network. The considered vertices are 
the 27 countries belonging to the EU community in 2008 and 
the weights assigned to the links are the correlation 
coefficients. An averaging has been performed over the 
squared values obtained when a constant size time window is 
moved with a constant time step over the scanned time 
interval (1993-2008). 

   Usually, the correlation coefficients are computed in 
various time windows, with a given size; the first problem 
brought into discussion here above and outlined in Appendix 
A has been the role played by the time window size. In 
particular, the variance of the weights dataset has been found 
to be a monotonically increasing function of the time window 
size. This unusual result reflects the weight distribution 
shifting from a Gaussian to a uniform-like shape when the 
time window size used for data analysis increases. This 
transition has been explained when analysing the eigenvalue 
spectrum of the adjacency matrix in various time windows: as 
the time windows size increases, more and more common 
factors must be taken into account as underlying the 
adjacency matrix, so that the correlation coefficients 
(absolute) values cover almost uniformly the interval between 
0 and 1.  

   Finally, we have to point out that the mapping of the 
GDP/capita and other macroeconomic time series into a 
weighted network structure allows a direct visualisation of the 
inter-country connections from at least three different 
viewpoints: (a) as relative distances in the bi- or multi-

dimensional space of the adjacency matrix eigenvalues; (b) as 
statistical significant edges in the graph plot; (c) as relative 
positions in the country averaged overlapping coefficients 
based hierarchy. In all these three ways, the derived clustering 
structure is found to have a remarkable consistency with the 
results reported in the actual economic literature. In the 
future, other network multi-vertex characteristics (clustering, 
minimal path, centrality, etc.) may be expected to be studied 
in order to show whether they play an important role in a 
better understanding of economic connections.           

 
 
APPENDIX A: IS THERE AN OPTIMAL TIME 
WINDOW? 

   
 A Kolmogorov-Smirnov test has been performed over the 

CDF (Fig.1) corresponding to every time window size [31]. 
The p-values are found to be small (0.12 – 0.16) for 3 and 4 
years as well as for 9, 10 and 11 years time window sizes; 
some large p-values are obtained for the range 5 – 8 years 
(0.34-0.48) and drop to 0.01 and 0.00 for 12-16 time window 
size. As generally accepted ([31], [32]), the null hypothesis is 
rejected when p-values are smaller than 0.10. Thus, one can 
conclude that the hypothesis of Gaussian distribution is 
rejected for the time windows larger than 11 years. 

   The χ2 statistical test has been performed in contrast 
against the hypothesis of a uniform distribution. The standard 
confidence intervals are found to be less than 1% for the 3 
and 5 years time window sizes, while for the 10 and 16 years 
time window sizes they are found to be at 85% and 90% 
respectively.  

   As regards the problem of the “optimal” time window, 
one must firstly recall that usually, the “best” time window 
size is considered to be the one corresponding to the minimal 
variance of the output dataset. However, this criterion is not 
universal. From the Kolmogorov-Smirnov test we have 
derived that for the 5-8 years time window sizes the 
corresponding distributions are “more Gaussian” than for the 
small time windows of 3 and 4 years. Moreover, in the 3 and 
4 years window sizes the same statistical test points out to a 
relatively large number of “outliers” which may be seen as 
spurious correlations.  

   In view of the above considerations, we conclude that the 
“optimal” time window sizes are situated in the interval 5-8 
years. That is why some particular results in the Sections 3-5 
are derived from a constant size time window of 5 years, for 
which the distribution of {wij} set is Gaussian, at least in its 
central part (see Fig. 3, inset). 

 
 

APPENDIX B: THE T-STUDENT’S TEST APPLIED TO 
THE [wij] MATRIX 

 
   The linear relationship between two variables can be 

tested using t-statistics [32] by computing: 
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where n – 2 is the number of degrees of freedom. The 

correlation (weight) wij is considered to be statistically 
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significant if the computed t value is greater than a critical 
value tα read from the t-Student’s distribution table for the α 
level of significance.  

 
From Eq. (6), if wij = wα and t = tα  one gets: 
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 Taking n = 5 (the number of statistical data used for 

computing each correlation coefficient in the 5 years time 
window size), from the t-Student distribution tables we find 
the critical values tα1 = 0.98; tα2 = 1.64 and tα3 = 2.35 for the 
levels of significance α1 = 0.4; α2 = 0.2 and α3 = 0.1; (or, 
equivalently, 60%, 80% and, respectively, 90% confidence 
intervals). The corresponding threshold values are wα1 = 0.49; 
wα2 = 0.69 and wα3 = 0.81, they are therefore used as 
threshold for the display (Fig. 6a, 6b, 6c). 
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